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 27 

Abstract 28 

Stochastic weather simulation models are commonly employed in water resources management 29 

and agricultural applications. The data simulated by these models, such as precipitation, 30 

temperature, and wind, are used as input for hydrological and agricultural models. Stochastic 31 

simulation of multisite precipitation occurrence is a challenge because of its intermittent 32 

characteristics as well as spatial and temporal cross-correlation. Employing a nonparametric 33 

technique, k-nearest neighbor resampling (KNNR), and coupling it with Genetic Algorithm (GA), 34 

this study proposes a novel simulation method for multisite precipitation occurrence. The proposed 35 

discrete version of KNNR (DKNNR) model is compared with an existing parametric model, called 36 

multisite occurrence model with standard normal variate (MONR). The datasets simulated from 37 

both the DKNNR model and the MONR model are tested using a number of statistics, such as 38 

occurrence and transition probabilities as well as temporal and spatial cross-correlations. Results 39 

show that the proposed DKNNR model can be a good alternative for simulating multisite 40 

precipitation occurrence. We also tested the model capability to adapt climate change. It is shown  41 

that the model is capable but further improvement is required to have specific variations of the 42 

occurrence probability due to climate change. Combining with the generated occurrence, the 43 

multisite precipitation amount can then be simulated by any multisite amount model.  44 

45 
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1. Introduction 46 

Stochastic simulation of weather variables has been employed for water resources 47 

management, hydrological design, agricultural applications, filling in missing historical data, 48 

extending observed records, simulating data, and simulating different weather conditions. 49 

Stochastic simulation models play a key role in producing weather sequences, while preserving 50 

the statistical characteristics of observed data. A number of stochastic weather simulation models 51 

have been developed using parametric and nonparametric approaches (Lee, 2017; Lee et al., 2012; 52 

Wilby et al., 2003; Wilks, 1999; Wilks and Wilby, 1999).  53 

Parametric approaches summarize the statistical characteristics of observed weather data 54 

with a parameter set (Jeong et al., 2012; Lee, 2016; Zheng and Katz, 2008). The parameters fitted 55 

with observed weather data are employed in simulation. In nonparametric approaches, historical 56 

analogs with current conditions are searched following the weather simulation data (Buishand and 57 

Brandsma, 2001; Lee et al., 2012). Furthermore, combinations of parametric and nonparametric 58 

models have also been proposed (Apipattanavis et al., 2007; Frost et al., 2011).  59 

Among weather variables, the precipitation variable possesses intermittency and zero values 60 

between precipitation events, and to properly reproduce them is difficult and remains a challenge 61 

(Beersma and Buishand, 2003; Hughes et al., 1999; Katz and Zheng, 1999). Due to this difficulty, 62 

precipitation is simulated separately from other variables. The main method for reproducing 63 

intermittency has been the multiplication of precipitation occurrence and an amount as Z=X·Y, 64 

where X is the occurrence (binary as either 0 or 1) and Y is the amount (Jeong et al., 2013; Lee and 65 

Park, 2017; Todorovic and Woolhiser, 1975). The spatial and temporal dependence in the 66 

occurrence and amount of precipitation introduces further complexity multisite simulation.  67 
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Wilks (1998) presented a multisite simulation model for the occurrence process (i.e. X) using 68 

the standard normal variable that is spatially dependent, representing the relation between the 69 

occurrence variable and the standard normal variable with simulation data. Even though the 70 

multisite occurrence data simulated by this model preserves various statistical characteristics of 71 

the observed data well, some drawbacks still exist, such as underestimation of lagged cross-72 

correlation. Furthermore, the relation between standard normal variable and occurrence variable 73 

relies on long stochastic simulation.  74 

Lall and Sharma (1996) proposed a nonparametric simulation model, called k-nearest 75 

neighbor resampling (KNNR). The model has been updated to simulate multivariate hydro-76 

meteorological variables (Brandsma and Buishand, 1998; Mehrotra et al., 2006; St-Hilaire et al., 77 

2012). One of the major drawbacks of this multivariate KNNR model is that the simulated data 78 

cannot produce patterns different from those of the observed data. Lee et al. (2010a) overcame this 79 

shortcoming by mixing the simulated dataset with Genetic Algorithm (GA) that led to the 80 

reproduction of similar populations. A number of variants of KNNR-GA have since been applied 81 

(Lee et al., 2012; Lee and Park, 2017). 82 

Therefore, in the current study we propose a novel simulation method for multisite 83 

occurrence of the precipitation variable with a nonparametric approach. The proposed 84 

nonparametric model is compared with the existing multisite model (Wilks, 1998). The paper is 85 

organized as follows. The next section presents a mathematical background of existing multisite 86 

occurrence modeling. The modeling procedure is discussed in section 3. The study area and data 87 

are reported in section 4. The model is applied in section 5. Results of the proposed model are 88 

discussed in section 6, and summary and conclusions are presented in section 7.  89 
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2. Background 90 

2.1. Single site occurrence modeling  91 

Let s

tX represent the occurrence of daily precipitation for a location s (s=1,…, S) on day t 92 

(t=1,…, n; n is the number observed days) and let s

tX be either zero for dry day or one for wet day. 93 

The first order Markov chain model for s

tX is defined with the assumption that the occurrence 94 

probability of a wet day is fully defined by the previous day as 95 

  ss

t

s

t pXX 011 0|1Pr  
     (1) 96 
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s
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Also ss pp 0100 1  and ss pp 1110 1  , since the summation of zero and one should be unity 98 

with the same previous condition. This consists of a transition probability matrix (TPM) as 99 
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The marginal distributions of TPM (i.e. p0 and p1) can be expressed with TPM and its condition of 101 

p0 + p1 =1 as: 102 
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Note that p1 represents the probability of precipitation occurrence for a day, while p0 does non-105 

occurrence. The lag-1 autocorrelation of precipitation occurrence is the combination of transition 106 

probabilities as: 107 

     ss ppss 01111 ),(       (6) 108 

 The simulation can be done by comparing TPM with a uniform random number (ut
s) as 109 
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where s

ip 1
is the selected probability from TPM regarding the previous condition i (i.e. either 0 or 111 

1). Wilks (1998) suggested a different method using a standard normal random number s

tw  ~N[0,1] 112 

as 113 
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where 1 indicates the inverse of the standard normal cumulative function Φ.  115 

2.2. Multisite occurrence modeling 116 

Wilks (1998) suggested a multisite occurrence model using a standard normal random 117 

number (here, denoted as MONR) that is spatially dependent but serially independent.  The 118 

correlation of the standard normal variate for a site pair of q and s can be expressed as:  119 

], [),( s

t

q

t wwcorrsq       (9) 120 

Also, the correlation of the original occurrence variate is 121 
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 ],[),( s

t

q

t XXcorrsq       (10) 122 

Once the correlation of the standard normal variate is known, the simulation of multisite 123 

precipitation occurrence is straightforward. Multivariate standard normal distribution  is used with 124 

the parameter set of [0, T] where 0 is the zero vector (Sx1) and T is the correlation matrix with the 125 

elements of ),( sq for },...,1{ Sq  and },...,1{ Ss .  126 

Since direct estimation of ),( sq is not applicable, a simulation technique is used to estimate  127 

),( sq from ),( sq . A long sequence of the occurrence process is simulated with different values 128 

of ),( sq and its corresponding correlation of the original domain ),( sq  is estimated with the 129 

simulated long sequence by the inverse standard normal cumulative function (i.e. -1). A curve 130 

between ),( sq and ),( sq is derived from this long simulation with the MONR model and is 131 

employed for the parameter estimation for real application. 132 

3. DKNNR  133 

3.1. DKNNR modeling procedure 134 

In the current study, a novel multisite simulation model for discrete occurrence of precipitation 135 

variable with k-nearest neighbor resampling (KNNR) technique (Lall and Sharma, 1996; Lee 136 

and Ouarda, 2011; Lee et al., 2017) for discrete case (denoted as Discrete KNNR; DKNNR) 137 

is proposed by combining a mixture mechanism with Genetic Algorithm (GA).  138 

Provided the number of nearest neighbors, k, is known, the discrete k-nearest neighbor 139 

resampling with genetic algorithm is done as follows: 140 
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(1) Estimate the distance between the current (i.e. time index: c) multisite occurrence 141 

s

cX and the observed multisite occurrence s

ix . Here, the distance is measured for 142 

i=1,…,n-1 as 143 
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s
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s

ci xXD
1       

(11) 144 

(2) Arrange the estimated distances from step (1) in ascending order, select the first k 145 

distances (i.e., the smallest k values), and reserve the time indices of the smallest k 146 

distances. 147 

(3) Randomly select one of the stored k time indices with the weighting probability 148 

given by 149 
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(4) Assume the selected time index from step (3) as p. Note that there are a number of 151 

values that have the same distance as the selected 
pD , since 

pD  is a natural number 152 

between 0 and S. A random selection procedure is required to take into account the 153 

cases with the same quantity. One particular time index is randomly selected with 154 

the equal probabilities among the time indices of the same distances.  155 

(5) Assign the binary vector of the proceeding index of the selected time as156 

},1{1+1+ ][= Ss

s

pp x ∈x . Here, p is the finally selected time index from step (4). 157 

(6) Execute the following steps for GA mixing if GA mixing is selected. Otherwise, skip 158 

this step. 159 
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(6-1) Reproduction: Select one additional time index using steps (1) through (4) and 160 

denote this index as p*. Obtain the corresponding precipitation occurrence 161 

values, },...,1{1*1* ][ Ss

s

pp x ∈ x . The subsequent two GA operators employ the two 162 

selected vectors, 
1+px  and

 1+*px .  163 

(6-2) Crossover: Replace each element s

px 1
 with s

px 1*
at probability crP , i.e., 164 
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    (13) 165 

where ε is a uniform random number between 0 and 1. 166 

(6-3) Mutation: Replace each element (i.e., each station, s=1,…, S) with one selected 167 

from all the observations of this element for i=1,…,n with probability mP , i.e., 168 
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    (14) 169 

where 
sx 1  is selected from },...,1{][ ni

s

ix ∈  with equal probability for i=1,…,n and 170 

ε is a uniform random number between 0 and 1. 171 

(7) Repeat steps (1)-(6) until the required data are generated. 172 

The selection of the number of nearest neighbors (k) has been investigated by Lall and 173 

Sharma (1996) and Lee and Ouarda (2011). A simple selection method was applied in the current 174 

study as nk  . For hydrometeorological stochastic simulations, this heuristic approach of k 175 

selection has been employed  (Lall and Sharma, 1996; Lee and Ouarda, 2012; Lee et al., 2010b; 176 

Prairie et al., 2006; Rajagopalan and Lall, 1999).  The roles of crossover probability crP  and 177 
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mutation probability mP  were studied by Lee et al. (2010b). Lee et al. (2010b) showed that Pcr =0.1 178 

and Pm=0.01 can be a reasonable parameter set which does not critically affect the performance. 179 

Therefore, this parameter set was applied in the current study. In Appendix A, an example of the 180 

DKNNR simulation procedure is explained in detail.  181 

3.2. Adaptation to climate change 182 

The capability of model to take climate change into account is critical. For example, the 183 

marginal distributions and transition probabilities in Eqs. (5) and (3) can change in future climate 184 

scenarios. It is known that nonparametric simulation models have a difficulty to adapt to climate 185 

change, since the models employ in general the current observation sequences. However, the 186 

proposed model in the current study possesses the capability to adapt to the variations of 187 

probabilities by tuning the crossover and mutation probabilities in Pcr (13) and Pm (14) , adding 188 

the condition when applied.  189 

For example, the probability of P11 can be increased with the cross-over probability Pcr by 190 

adding the condition to increase the probability of P11 as:  191 
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It is obviously possible to increase the probability of P1 by removing the condition of 1s

cX . 193 

In addition, further adjustment can be made with the mutation process in Eq. (14) as 194 
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This adjustment of adding the condition 1 1 

sx  can increase the marginal distribution as much as 196 

Pm×P1.  This has been tested in the case study. 197 

4. Study area and data description 198 

For testing the occurrence model, 12 weather stations were selected from Yeongnam province 199 

which is located in the southeastern part of South Korea, as shown in Figure 1. Information on 200 

longitude and latitude (fourth and fifth columns) as well as order index and the identification 201 

number (first and second columns) of these stations operated by Korea Meteorological 202 

Administration with the area name (third column) is shown at Table 1.  203 

Figure 1 illustrates the locations of the selected weather stations. All the stations are inside 204 

Yeongnam province which consists of two different regions as north and south Gyeongsang as 205 

well as the self-governing cities of Busan, Deagu, and Ulsan. Most of the Yeongnam region is 206 

drained to Nakdong River. It is important to analyze the impact of weather conditions for planning 207 

agricultural operations and water resources management especially during the summer season, 208 

because around 50-60 percent of the annual precipitation occurs during the summer season from 209 

June to September.  The length of daily precipitation data record ranges from 1976 to 2008 and 210 

the summer season record was employed since a large number of rainy days occurs during summer 211 

and it is important to preserve these characteristics. Also, the whole year dataset was tested and 212 

other seasons were further applied but the correlation coefficient was relatively high and its 213 

correlation matrix estimated was not a positive semi-definite matrix for the MONR model. 214 
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5. Application  215 

To analyze the performance of the proposed DKNNR model, the occurrence of precipitation 216 

was simulated. The DKNNR simulation was compared with that of the MONR model. For each 217 

model, 100 series of daily occurrence with the same record length were simulated.  The key 218 

statistics of observed data and each generated series, such as transition probabilities (P11, P01 , and 219 

P1) and cross-correlation (see Eq.(10)), were determined. The MONR model underestimated the 220 

lag-1 cross-correlation, as indicated by Wilks (1998). In the current study, this statistic was 221 

analyzed, since a synoptic scale weather system could result in lagged cross-correlation (Wilks, 222 

1998). It was formulated as 223 

],[),( 11

s

t

q

t XXcorrsq      (17) 224 

Statistics from 100 generated series were evaluated by the root mean square error (RMSE) 225 

expressed as below:  226 

2/1
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hG

m
N

RMSE     (18) 227 

where N is the number of series (here 100), G

m is the statistic estimated from the mth generated 228 

series, while 
h is the statistic for the observed data. Note that lower RMSE indicates better 229 

performance representing the summarized error of a given statistic of generated series from the 230 

statistic of the observed data.  231 

The 100 simulated statistic values were illustrated with boxplots to show their variability as 232 

shown in Figure 2 - Figure 4. The box of boxplot represents the interquartile range (IQR) ranging 233 

25 percentile to 75 percentile. The whiskers extend to up and down 1.5×IQR. Data beyond the 234 
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whiskers (1.5×IQR) are indicated by a plus sign (+). The horizontal line inside the box represents 235 

the median of the data. The statistics of the observed data are denoted by a cross (x). The closer a 236 

cross is to the horizontal line inside the box, the better the simulated data from a model reproduces 237 

the statistical characteristics of the observed data. 238 

6. Results 239 

6.1. Occurrence and transition probabilities 240 

The data simulated from the proposed DKNNR model and the existing MONR model were 241 

analyzed. The estimated transition probabilities (P11 and P01 in Eq. (3)) as well as the occurrence 242 

probability (P1 in Eq. (5)) are shown in Table 2 and Figure 2 - Figure 4 for the observed data and 243 

the data generated from the DKNNR and MONR models. In Table 2, the observed statistic shows 244 

that P11 is always higher than P01 and P1 is between P11 and P01. Site 6 shows the lowest P11 and 245 

P1 and site 12 shows the highest P11.  246 

As shown in Figure 2, the probability P11 of the observed data shows that sites 6, 7, 8, and 9 247 

located in the northern part of the region exhibited lower consistency (i.e. consecutive rainy days) 248 

than did the other sites, while sites 5 and 12 had higher probability of P11 than did other sites. Both 249 

models preserved well the observed P11 statistic. It seems that the MONR model had a slight better 250 

performance since this statistic is parameterized in the model as shown in the section 2.2. Note 251 

that the MONR model employed the transition probabilities in simulating rainfall occurrence, 252 

while DKNNR model did not. The occurrence probability P1 can be described with the 253 

combination of transition probabilities as in Eq. (5). Even though the transition probabilities were 254 

not employed in simulating rainfall occurrence, the DKNNR model preserved this statistic fairly 255 

well.  256 
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As shown in Figure 3, the P01 probability showed a slightly different behavior such that sites 257 

1, 2, and 3 located in the middle part of the Yeongnam province showed a higher probability than 258 

did other sites. A slight underestimation was seen for sites 2 and 11 but it was not critical, since its 259 

observed value with a cross mark was close to the upper IQR representing 75 percentile.  260 

The behavior of P1 was found to be same as that of the P11 probability. It can be seen in 261 

Figure 4 that no significant underestimation is seen for the DKNNR model (top panel). The P1 262 

statistic was fairly preserved by both DKNNR and MONR models. Note that the MONR model 263 

parameterized the P1 statistic through the transition probabilities as in Eq. (5), while DKNNR 264 

model did not. Although the DKNNR model did not use any parameter for simulation, the P1 265 

statistic was preserved fairly well.  266 

6.2. Cross-correlation 267 

Cross-correlation is a measure of relationship between sites. Preservation of cross-268 

correlation is important for the simulation of precipitation occurrence and is required in the 269 

regional analysis for water resources management or agricultural applications. Furthermore, 270 

lagged cross-correlation is also essential as much as is cross-correlation (i.e. contemporaneous 271 

correlation). For example, the amount of streamflow for a watershed from a certain precipitation 272 

event is highly related with lagged cross-correlation. It is accepted that precipitation event is not 273 

significantly correlated with more than one day. Therefore, only lag-1 cross-correlation was 274 

analyzed in the current study. 275 

The cross-correlation of observed data is shown in Table 3. High cross-correlation among 276 

grouped sites, such as sites 6, 7, and 8 (northern part) and sites 3, 4, and 5 as well as 12 (southeast 277 

coastal area, 0.68-0.87), was found. As expected, sites 5 and 12 had the highest cross-correlation 278 
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(0.87) due to the proximity. The northern sites and coastal sites showed low cross-correlation. This 279 

observed cross-correlation was well preserved in the data generated from both DKNNR and 280 

MONR models, as shown in Figure 5 as well as Table 4 and Table 5. However, consistently slight 281 

but significant underestimation of cross-correlation was seen for the data generated by the MONR 282 

model (see the bottom panel of Figure 5). Note that the errobars are extended to upper and lower 283 

lines of the circles to 1.95×standard deviation.  The difference of RMSE in Table 6 showed this 284 

characteristic, as most of the values were positive, to be indicating that the proposed DKNNR 285 

model performed better for cross-correlation.  286 

The lag-1 cross-correlation of observed data, as shown in Table 7, ranged from 0.22-0.35. 287 

The lag-1 cross-correlation for the same site (i.e. ),(1 sq , q=s) was autocorrelation and was highly 288 

related with P01 and P11 as in Eq. (6). All the lag-1 cross-correlations exhibited similar magnitudes 289 

even for autocorrelation. This implies that the lag-1 cross-correlation among the selected sites was 290 

as strong as the autocorrelation and as much as the transition probabilities P01 and P11, thereof. 291 

Relatively low lag-1 cross-correlation was observed between northern sites (6, 7, and 8) and 292 

coastal sites (3, 4, and 5), as shown in Table 7. 293 

The observed cross-correlation was well preserved in the data generated by the DKNNR 294 

model, as shown in the top panel of Figure 6, while the MONR model showed significant 295 

underestimation, as seen in the bottom panel of Figure 6. The difference of RMSE shown in Table 296 

8 reflects this behavior. In the bottom panel of Figure 6, some of the lag-1 cross-correlations were 297 

well preserved, that was aligned with the base line. From Table 8, the MONR model reproduced 298 

the autocorrelations well with the shaded values. It is because the lag-1 autocorrelation was 299 

indirectly parameterized with the transition probabilities of P11 and P01 as in Eq. (6). Other than 300 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-181
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 12 October 2018
c© Author(s) 2018. CC BY 4.0 License.



16 

this autocorrelation, the lag-1 cross-correlation was not reproduced with the MONR model. This 301 

shortcoming was mentioned by Wilks (1998). Meanwhile, the proposed DKNNR model preserved 302 

this statistic without any parameterization. 303 

Also, the whole year data instead of the summer season data was tested for model fitting. 304 

Note that all the results presented above were with the summer season data (June-September) as 305 

mentioned in section 4 on the data description. The lag-1 cross-correlation is shown in Figure 7 306 

which indicates that the same characteristic was observed as for the summer season, such that the 307 

proposed DKNNR model preserved better the lagged cross-correlation than did the existing 308 

MONR model. Other statistics, such as correlation matrix and transition probabilities, exhibited 309 

the same results (not shown). Also, other seasons were tried but the estimated correlation matrix 310 

was not a positive semi-definite matrix and its inverse cannot be made for multivariate normal 311 

distribution in the MONR model. It was because the selected stations were close to each other 312 

(around 50-100 km) and produced high cross-correlation, especially in the occurrence during dry 313 

seasons. Special remedy should be applied, such as decreasing cross-correlation by force, but 314 

further remedy was not applied in the current study since it was not within the current scope and 315 

focus. 316 

6.3. Adaptation to climate change 317 

Model adaptability to climate change in hydro-meteorological simulation models is a critical 318 

factor, since one of the major applications of the models is to assess the impact of climate change. 319 

Therefore, we tested the capability of the proposed model in the current study by adjusting the 320 

probabilities of cross-over and mutation as in Eqs.(15) and (16). A number of variations can be 321 

made with different conditions.  322 
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In Figure 8, the changes of transition and marginal probabilities are shown along with 323 

increasing the crossover probability Pcr from 0.01 to 0.2 with the condition that that the candidate 324 

value is one and the previous value is also one as in Eq. (15) for the selected 5 stations among the 325 

12 stations (from station 1 to station 5, see Table 1 for the detail). The stations were limited in this 326 

analysis due to computational time. At each case 100 series were simulated. The average value of 327 

the simulated statistics is presented in the figure. It is obvious that the transition probability P11 328 

increased as intentioned along with the increase of Pcr . As expected from Eq. (5), P1 presents that 329 

the change of P1 is highly related to P11. However, the probability P01 fluctuated along with the 330 

increase of Pcr. Elaborate work to adjust all the probabilities is however required.  331 

The changes in transition and marginal probabilities are presented in Figure 9 with increasing 332 

mutation probability Pm from 0.01 to 0.2 under the condition that the candidate value is one so that 333 

the marginal probability P1 increased. P01 also increased along with increasing P1. The change of 334 

P11 was not related with other probabilities. The combination of the adjustment of Pcr and Pm with 335 

a certain condition to the previous state will allow the specific adaptation for simulating future 336 

climatic scenarios.  337 

7. Conclusions 338 

In the current study, a nonparametric simulation model, based on discrete KNNR and 339 

DKNNR, is proposed. The proposed DKNNR model is compared with the existing MONR model. 340 

Occurrence and transition probabilities and cross-correlation as well as lag-1 cross-correlation are 341 

estimated for both models. Better preservation of cross-correlation and lag-1 cross-correlation with 342 

the DKNNR model than the MONR model is observed. For some cases (i.e., the whole year data 343 

and other seasons than the summer season), the estimated cross-correlation matrix is not a positive 344 
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semi-definite matrix so the multivariate normal simulation is not applicable for the MONR model 345 

because the tested sites are close to each other with high cross-correlation.  346 

Results of this study indicate that the proposed DKNNR model reproduces the occurrence 347 

and transition probabilities fairly well and preserves the cross-correlations better than the existing 348 

MONR model. Thus, the proposed DKNNR model can be a good alternative for simulating 349 

multisite precipitation occurrence. 350 

We tested further enhancement of the proposed model for adapting climate change through 351 

modifying the mutation and crossover probability Pm and Pcr with the current and previous states. 352 

The results show that the current model has the capability to adapt to the climate change scenarios 353 

but elaborate work is required however. Further study on improving the model adaptability to 354 

climate change will be followed in near future. 355 

Also, the simulated multisite occurrence can be coupled with a multisite amount model to 356 

produce precipitation events, including zero values. Further development can be made for multisite 357 

amount models with a nonparametric technique, such as KNNR and bootstrapping.  358 

Code and Data Availability  359 

DKNNR code is written in Matlab and is available at the supplement. 360 

The precipitation data employed in the current study is downloadable through 361 

http://www.weather.go.kr/weather/main.jsp  362 

Acknowledgment 363 

This work was supported by the National Research Foundation of Korea (NRF) grant (NRF-364 

2018R1A2B6001799) funded by the Korean Government (MEST). 365 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-181
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 12 October 2018
c© Author(s) 2018. CC BY 4.0 License.



19 

Appendix A: Example of DKNNR  366 

In this appendix, one example of DKNNR simulation is presented with observed dataset in 367 

Table A 1 (i.e. },1{][ Ss

s

ii x ∈x  for i=1,…,n; here S=12 and n=16). The upper part of the table 368 

presents the observed precipitation (unit: mm). Its occurrence data is presented in the bottom part 369 

of this table. The current precipitation occurrence }12,...,1{][  s

s

cc XX is shown in the second row of 370 

Table A 2. The number of nearest neighbors 416  nk and the parameters for GA (i.e. Pc 371 

and Pm) are 0.1 and 0.01, respectively. The simulation can be made as follows: 372 

(1) Estimate the distance Di between  ix  and cX for i=1,…,n-1 as in Eq.(11). For example, 373 

for i=1, 374 

6|10|...|11||10|
1

11 


S

s

ss

c xXD  375 

All the estimated distances are shown in the last column of Table A 2. 376 

(2) The daily index values are sorted according to the smallest distances shown in the first 377 

two columns of Table A 3. The sorted day indices and their corresponding distances are 378 

shown in the third and fourth columns of Table A 3. Among k number of sorted indices, 379 

one is selected with the weight probability (see Eq.(12)), which is shown in the last 380 

column of Table A 3. 381 

(3) Simulate a uniform random number (u) between 0 and 1. Say u=0.321. This value must 382 

be compared with the cumulative weighted probabilities in the last column of Table A 3 383 

as [0 0.48 0.72 0.88 1.0]. The corresponding day index is assigned as to where the 384 

simulated uniform number falls in the cumulative weighted probabilities, here [0 0.48]. 385 
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Therefore, the selected day, p, is 14. The occurrences of the following day p+1=15 for 12 386 

stations are selected as in the second row of Table A 4.  387 

(4) For GA mixture, another set must be chosen as in step (3). Say u=0.561, which falls in 388 

[0.48 0.72]. The second one should be selected. However, there are a number of days with 389 

the same distances. Specifically, six days have the same distances with Di=4. In this case, 390 

one among all six days is selected with equal probability. Assume that p=4 is selected and 391 

the following occurrences are selected as shown in the third row of Table A 4. 392 

(5) With two sets, crossover and mutation process is performed as follows: 393 

(5-1) Crossover: For each station, a uniform random number (ε) is generated and 394 

compared with Pc=0.1 here. Say ε =0.345, then skip since ε =0.345> Pc=0.1. For 395 

s=6, assume the generated random number, ε (=0.051)< Pc(=0.1) and then switch 396 

the 6th station value of Set 1 into the value of Set 2 (see Table A 4). The occurrence 397 

state of s

cX 1
turns into 1 from 0 as shown in the fourth row of Table A 4 as well as 398 

station 8.  399 

(5-2) Mutation: For each station, a uniform random number (ε) is generated and compared 400 

with Pm=0.01. For s=12, assume ε =0.009< Pm=0.01 and switch the 12th station 401 

value of Set 1 with the one selected among all the observed 12th station values with 402 

equal probability (here the last column, s=12, of the bottom part of Table A 1, [1 1 403 

0 0 … 1]). The occurrence state of 12

1cX turns into 0 from 1 as shown in the fourth 404 

column of Table A 4.  405 

(6) Repeat steps (1)-(5) until the target simulation length is reached.  406 

407 
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 483 

Table 1. Information on 12 selected stations from Yeongnam province, South Korea. 484 

Order 
Station 

Number
†
 

Name Longitude Latitude 

1 138 Pohang 129.3797 36.0327 

2 143 Daegu 128.6189 35.8850 

3 152 Ulsan 129.3200 35.5600 

4 159 Busan 129.0319 35.1044 

5 162 Tongyeong 128.4356 34.8453 

6 277 Youngdeok 129.4092 36.5331 

7 278 Uisung 128.6883 36.3558 

8 279 Gumi 128.3206 36.1306 

9 281 Youngcheon 128.9514 35.9772 

10 285 Hapcheon 128.1697 35.5650 

11 288 Milyang 128.7439 35.4914 

12 294 Geojae 128.6044 34.8881 

†The station number indicates the identification number operated by Korea Meteorological 485 

Administration (KMA). 486 
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Table 2. Occurrence and transition probabilities of observed data and data simulated by DKNNR 489 

and MONR for 12 stations from Yeongnam province, South Korea, during the summer season. 490 

Note that 100 sets with the same record length as the observed data were simulated and the 491 

statistics of 100 sets were averaged.   492 

 Obs DKNNR MONR 

  P11 P01 P1 P11 P01 P1 P11 P01 P1 

S1 0.57 0.26 0.38 0.55 0.26 0.37 0.58 0.27 0.39 

S2 0.56 0.27 0.38 0.57 0.26 0.37 0.58 0.27 0.39 

S3 0.57 0.26 0.38 0.56 0.25 0.37 0.58 0.27 0.39 

S4 0.58 0.25 0.37 0.56 0.24 0.36 0.60 0.25 0.39 

S5 0.58 0.25 0.37 0.57 0.24 0.36 0.60 0.25 0.38 

S6 0.52 0.24 0.33 0.50 0.24 0.32 0.53 0.25 0.35 

S7 0.54 0.25 0.35 0.53 0.24 0.34 0.56 0.26 0.37 

S8 0.55 0.25 0.36 0.52 0.24 0.34 0.57 0.26 0.38 

S9 0.54 0.24 0.35 0.54 0.23 0.34 0.55 0.26 0.36 

S10 0.58 0.24 0.37 0.56 0.23 0.35 0.57 0.26 0.38 

S11 0.56 0.24 0.36 0.55 0.23 0.34 0.57 0.25 0.37 

S12 0.59 0.24 0.37 0.58 0.24 0.36 0.61 0.25 0.39 

 493 
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Table 3. Cross-correlation of observed data for 12 stations from Yeongnam province, South 496 

Korea. 497 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 1.00 0.71 0.71 0.65 0.58 0.71 0.65 0.64 0.76 0.65 0.67 0.60 

S2 0.71 1.00 0.67 0.64 0.61 0.65 0.69 0.72 0.80 0.72 0.73 0.62 

S3 0.71 0.67 1.00 0.75 0.68 0.62 0.57 0.58 0.68 0.67 0.75 0.70 

S4 0.65 0.64 0.75 1.00 0.79 0.57 0.56 0.56 0.66 0.67 0.74 0.82 

S5 0.58 0.61 0.68 0.79 1.00 0.52 0.54 0.56 0.61 0.65 0.70 0.87 

S6 0.71 0.65 0.62 0.57 0.52 1.00 0.70 0.66 0.68 0.59 0.60 0.55 

S7 0.65 0.69 0.57 0.56 0.54 0.70 1.00 0.79 0.71 0.64 0.63 0.56 

S8 0.64 0.72 0.58 0.56 0.56 0.66 0.79 1.00 0.71 0.68 0.65 0.57 

S9 0.76 0.80 0.68 0.66 0.61 0.68 0.71 0.71 1.00 0.69 0.72 0.62 

S10 0.65 0.72 0.67 0.67 0.65 0.59 0.64 0.68 0.69 1.00 0.77 0.66 

S11 0.67 0.73 0.75 0.74 0.70 0.60 0.63 0.65 0.72 0.77 1.00 0.71 

S12 0.60 0.62 0.70 0.82 0.87 0.55 0.56 0.57 0.62 0.66 0.71 1.00 

 498 
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Table 4. Averaged cross-correlation of the 100 simulated series from the DKNNR model for 12 501 

stations from Yeongnam province, South Korea. 502 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 1.00 0.69 0.69 0.63 0.57 0.69 0.64 0.63 0.74 0.63 0.66 0.59 

S2 0.69 1.00 0.65 0.63 0.61 0.63 0.68 0.70 0.77 0.71 0.72 0.61 

S3 0.69 0.65 1.00 0.73 0.66 0.60 0.56 0.57 0.67 0.66 0.73 0.68 

S4 0.63 0.63 0.73 1.00 0.77 0.56 0.55 0.56 0.64 0.65 0.72 0.80 

S5 0.57 0.61 0.66 0.77 1.00 0.51 0.53 0.55 0.60 0.64 0.69 0.84 

S6 0.69 0.63 0.60 0.56 0.51 1.00 0.68 0.65 0.66 0.58 0.59 0.54 

S7 0.64 0.68 0.56 0.55 0.53 0.68 1.00 0.76 0.70 0.63 0.61 0.55 

S8 0.63 0.70 0.57 0.56 0.55 0.65 0.76 1.00 0.70 0.67 0.64 0.56 

S9 0.74 0.77 0.67 0.64 0.60 0.66 0.70 0.70 1.00 0.68 0.71 0.61 

S10 0.63 0.71 0.66 0.65 0.64 0.58 0.63 0.67 0.68 1.00 0.75 0.65 

S11 0.66 0.72 0.73 0.72 0.69 0.59 0.61 0.64 0.71 0.75 1.00 0.70 

S12 0.59 0.61 0.68 0.80 0.84 0.54 0.55 0.56 0.61 0.65 0.70 1.00 
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 505 

Table 5. Averaged cross-correlation of 100 simulated series from the MONR model for 12 506 

stations from Yeongnam province. 507 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 1.00 0.69 0.69 0.59 0.57 0.67 0.63 0.62 0.74 0.62 0.63 0.57 

S2 0.69 1.00 0.63 0.62 0.60 0.64 0.66 0.69 0.76 0.70 0.70 0.60 

S3 0.69 0.63 1.00 0.71 0.65 0.59 0.55 0.56 0.64 0.64 0.72 0.68 

S4 0.59 0.62 0.71 1.00 0.78 0.54 0.54 0.54 0.63 0.62 0.70 0.78 

S5 0.57 0.60 0.65 0.78 1.00 0.51 0.52 0.55 0.59 0.62 0.66 0.84 

S6 0.67 0.64 0.59 0.54 0.51 1.00 0.67 0.63 0.67 0.56 0.59 0.52 

S7 0.63 0.66 0.55 0.54 0.52 0.67 1.00 0.76 0.67 0.61 0.59 0.53 

S8 0.62 0.69 0.56 0.54 0.55 0.63 0.76 1.00 0.69 0.65 0.62 0.54 

S9 0.74 0.76 0.64 0.63 0.59 0.67 0.67 0.69 1.00 0.65 0.70 0.59 

S10 0.62 0.70 0.64 0.62 0.62 0.56 0.61 0.65 0.65 1.00 0.73 0.62 

S11 0.63 0.70 0.72 0.70 0.66 0.59 0.59 0.62 0.70 0.73 1.00 0.68 

S12 0.57 0.60 0.68 0.78 0.84 0.52 0.53 0.54 0.59 0.62 0.68 1.00 

 508 

 509 

 510 

  511 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-181
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 12 October 2018
c© Author(s) 2018. CC BY 4.0 License.



30 

Table 6. The difference of RMSE of cross-correlation between MONR and DKNNR. Note that 512 

the positive value indicates that the DKNNR model better performs in preserving the cross-513 

correlation, while a negative value (underlined) shows that the MONR model better performs.  514 

†Underline represents a negative value implying that the MONR model better performs. 515 

 516 

 517 

 518 

  519 

MONR-

DKNNR 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 0.000 0.000 0.007 0.040 0.005 0.016 0.004 0.008 0.006 0.016 0.026 0.018 

S2 0.000 0.000 0.016 0.016 0.005 0.005† 0.016 0.011 0.018 0.009 0.016 0.010 

S3 0.007 0.016 0.000 0.016 0.011 0.009 0.004 0.005 0.025 0.020 0.014 0.001 

S4 0.040 0.016 0.016 0.000 0.002 0.018 0.013 0.015 0.016 0.027 0.023 0.020 

S5 0.005 0.005 0.011 0.002 0.000 0.007 0.012 0.007 0.006 0.016 0.021 0.007 

S6 0.016 0.005 0.009 0.018 0.007 0.000 0.009 0.014 0.006 0.019 0.001 0.016 

S7 0.004 0.016 0.004 0.013 0.012 0.009 0.000 0.008 0.023 0.014 0.018 0.010 

S8 0.008 0.011 0.005 0.015 0.007 0.014 0.008 0.000 0.010 0.017 0.024 0.015 

S9 0.006 0.018 0.025 0.016 0.006 0.006 0.023 0.010 0.000 0.023 0.007 0.017 

S10 0.016 0.009 0.020 0.027 0.016 0.019 0.014 0.017 0.023 0.000 0.018 0.026 

S11 0.026 0.016 0.014 0.023 0.021 0.001 0.018 0.024 0.007 0.018 0.000 0.020 

S12 0.018 0.010 0.001 0.020 0.007 0.016 0.010 0.015 0.017 0.026 0.020 0.000 
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Table 7. Lag-1 cross-correlation of observed data for 12 stations from Yeongnam province, 520 

South Korea. 521 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 0.30‡ 0.27 0.31 0.27 0.25 0.30 0.26 0.25 0.28 0.27 0.29 0.26 

S2 0.28 0.29 0.29 0.27 0.25 0.29 0.28 0.27 0.30 0.29 0.32 0.26 

S3 0.29 0.26 0.31 0.30 0.27 0.27 0.25 0.24 0.27 0.27 0.30 0.27 

S4 0.29 0.28 0.32 0.34 0.31 0.29 0.27 0.26 0.28 0.29 0.31 0.32 

S5 0.30 0.29 0.32 0.34 0.34 0.29 0.27 0.27 0.30 0.30 0.34 0.35 

S6 0.25 0.22 0.26 0.24 0.23 0.28 0.24 0.22 0.25 0.23 0.25 0.23 

S7 0.26 0.26 0.27 0.26 0.25 0.29 0.30 0.27 0.27 0.27 0.28 0.26 

S8 0.29 0.29 0.29 0.27 0.26 0.30 0.31 0.30 0.30 0.30 0.31 0.27 

S9 0.29 0.29 0.30 0.28 0.26 0.29 0.27 0.27 0.30 0.29 0.32 0.27 

S10 0.29 0.31 0.32 0.31 0.29 0.29 0.30 0.30 0.32 0.33 0.34 0.29 

S11 0.27 0.29 0.31 0.30 0.27 0.28 0.27 0.26 0.29 0.29 0.32 0.28 

S12 0.30 0.30 0.33 0.35 0.33 0.30 0.28 0.27 0.30 0.31 0.35 0.35 

‡Shaded values represents lag-1 autocorrelation (i.e. the one lagged correlation for the same site).  522 
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Table 8. The difference of RMSE of lag-1 cross-correlation between MONR and DKNNR. Note 525 

that a positive value indicates that the DKNNR model better performs in preserving lag-1 cross-526 

correlation, while a negative value (underlined) shows that the MONR model better performs. 527 

MONR-

DKNNR 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 0.003 0.050 0.081 0.062 0.044 0.098 0.060 0.046 0.048 0.050 0.076 0.046 

S2 0.056 0.004
†
 0.078 0.053 0.036 0.092 0.065 0.053 0.064 0.043 0.078 0.037 

S3 0.065 0.053 0.002 0.048 0.041 0.096 0.070 0.054 0.062 0.045 0.060 0.019 

S4 0.093 0.084 0.087 0.001‡ 0.040 0.123 0.089 0.083 0.081 0.065 0.078 0.034 

S5 0.109 0.096 0.111 0.074 0.002 0.129 0.106 0.088 0.110 0.076 0.120 0.045 

S6 0.031 0.016 0.062 0.043 0.044 0.001 0.020 0.017 0.031 0.029 0.046 0.029 

S7 0.053 0.048 0.081 0.063 0.057 0.085 0.003 0.025 0.060 0.048 0.078 0.056 

S8 0.089 0.077 0.096 0.080 0.063 0.111 0.070 0.001 0.084 0.070 0.101 0.063 

S9 0.049 0.047 0.091 0.064 0.052 0.088 0.055 0.050 0.004 0.064 0.084 0.055 

S10 0.085 0.094 0.107 0.090 0.065 0.123 0.107 0.093 0.106 0.000 0.095 0.061 

S11 0.065 0.064 0.076 0.054 0.036 0.096 0.081 0.062 0.064 0.032 0.001 0.034 

S12 0.118 0.102 0.105 0.080 0.043 0.138 0.108 0.096 0.115 0.093 0.120 0.000 

†Underline represents a negative value implying that the MONR model better performs. 528 

‡Shaded values represent lag-1 autocorrelation (i.e. the lagged-1 correlation for the same site).  529 
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 532 

Figure 1. Locations of 12 selected weather stations at the Yeongnam province. See Table 1 for 533 

further information about the stations.  534 
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 535 

Figure 2. Boxplots of the P11 probability for the simulated data from the DKNNR model (top 536 

panel) and the MONR model (bottom panel) as well as the observed (x marker) for the 12 537 

selected weather stations from the Yeongnam province. 538 

 539 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-181
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 12 October 2018
c© Author(s) 2018. CC BY 4.0 License.



35 

 540 

Figure 3. Boxplots of the P01 probability for the data simulated from the DKNNR model (top 541 

panel) and the MONR model (bottom panel) as well as the observed (x marker) for the 12 542 

selected weather stations from the Yeongnam province. 543 

 544 

 545 

 546 

 547 
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 550 
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 553 

Figure 4. Boxplots of the P1 probability for the data simulated from the DKNNR model (top 554 

panel) and the MONR model (bottom panel) as well as the observed (x marker) for the 12 555 

selected  weather stations from the Yeongnam province. 556 
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 557 

Figure 5. Scatterplot of cross-correlations between 12 weather stations for the observed data (X 558 

coordinate) and the generated data (Y coordinate) generated from the DKNNR model (top panel) 559 

and the MONR model (bottom panel).  The cross-correlations from 100 generated series are 560 

averaged for the filled circle and the errorbars upper and lower extended lines indicate the range 561 

of 1.95×standard deviation. 562 
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 564 

Figure 6. Scatterplot of lag-1 cross-correlations between 12 weather stations for the observed 565 

data (X coordinate) and the generated data (Y coordinate) generated from the DKNNR model 566 

(top panel) and the MONR model (bottom panel). The cross-correlations from 100 generated 567 

series are averaged for the filled circle and the errorbars upper and lower extended lines indicate 568 

the range of 1.95×standard deviation.  569 
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 570 

 571 

Figure 7. Scatterplot of lag-1 cross-correlations between 12 weather stations for the observed 572 

data (X coordinate) and the generated data (Y coordinate) generated from the DKNNR model 573 

(top panel) and the MONR model (bottom panel) with the whole year data not with the summer 574 

season. The cross-correlations from 100 generated series are averaged. 575 

 576 

 577 
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 581 

Figure 8. Transition probabilities and marginal distribution for the selected five stations along 582 

with changing the cross-over probability Pcr with the condition that the candidate value is one 583 

and the previous value is also one. See Eq.(15) for the detail. 584 
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 586 

Figure 9. Transition probabilities and marginal distribution along with changing the cross-over 587 

probability with the condition that the mutation is processed only if the candidate value is one. 588 

See Eq.(16) for the detail. 589 
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 592 

Table A 1. Example dataset of daily rainfall with 12 weather stations and 16 days for measured 593 

rainfall (mm) in the upper part of this table and its corresponding occurrences in the bottom part 594 

of this table. 595 

Day S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

1 2.0 2.9 1.2 0.0 0.0 1.8 4.0 8.9 2.0 4.6 1.3 0.6 

2 52.6 39.8 47.2 17.4 11.8 31.0 30.0 33.7 52.0 57.8 37.0 17.5 

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5 0.2 1.0 1.4 1.9 12.3 0.0 0.0 0.0 0.7 3.1 3.5 8.1 

6 14.8 0.2 0.8 0.2 5.0 0.0 0.0 18.0 0.0 0.0 0.6 3.1 

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 0.0 1.0 0.0 0.4 0.0 3.8 0.0 0.1 0.0 0.0 0.0 0.0 

11 7.1 6.4 12.8 12.8 13.6 2.3 2.0 5.4 6.0 7.3 16.4 20.3 

12 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 4.3 

13 10.0 1.6 11.6 14.3 1.5 5.4 0.0 0.0 2.5 0.0 2.7 16.1 

14 2.3 0.0 0.7 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 

15 31.5 4.3 30.6 12.7 14.4 25.8 3.5 0.8 5.0 2.7 6.5 20.3 

16 37.0 7.8 30.1 11.2 9.6 36.8 2.5 4.7 13.5 1.7 10.1 14.1 

Day S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

1 1 1 1 0 0 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 1 1 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 1 1 1 1 1 0 0 0 1 1 1 1 

6 1 1 1 1 1 0 0 1 0 0 1 1 

7 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 1 0 1 0 1 0 1 0 0 0 0 

11 1 1 1 1 1 1 1 1 1 1 1 1 

12 0 0 0 0 1 0 0 0 0 0 0 1 

13 1 1 1 1 1 1 0 0 1 0 1 1 

14 1 0 1 0 0 1 0 0 0 0 0 0 

15 1 1 1 1 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 1 1 
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 596 

Table A 2. Example dataset for estimating distances. The second row presents the current daily 597 

precipitation occurrences for 12 stations and the rows below show the absolute difference 598 

between the current occurrences (Xc) and the observed data in Table A 1. The last column 599 

presents the distances in Eq. (11). 600 

day S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Dist 

Xc 0 1 1 0 0 1 1 0 0 0 0 0  

1 1 0 0 0 0 0 0 1 1 1 1 1 6 

2 1 0 0 1 1 0 0 1 1 1 1 1 8 

3 0 1 1 0 0 1 1 0 0 0 0 0 4 

4 0 1 1 0 0 1 1 0 0 0 0 0 4 

5 1 0 0 1 1 1 1 0 1 1 1 1 9 

6 1 0 0 1 1 1 1 1 0 0 1 1 8 

7 0 1 1 0 0 1 1 0 0 0 0 0 4 

8 0 1 1 0 0 1 1 0 0 0 0 0 4 

9 0 1 1 0 0 1 1 0 0 0 0 0 4 

10 0 0 1 1 0 0 1 1 0 0 0 0 4 

11 1 0 0 1 1 0 0 1 1 1 1 1 8 

12 0 1 1 0 1 1 1 0 0 0 0 1 6 

13 1 0 0 1 1 0 1 0 1 0 1 1 7 

14 1 1 0 0 0 0 1 0 0 0 0 0 3 

15 1 0 0 1 1 0 0 1 1 1 1 1 8 

16 1 0 0 1 1 0 0 1 1 1 1 1 8 

 601 
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 603 

Table A 3. Example for selecting one sequence for Xc+1. The second row presents the distances 604 

in Table A 2. The third and fourth columns show the sorted days and distances for the smallest 605 

distances to the largest in the second column. The fourth row presents the probabilities estimated 606 

with Eq. (12). Note that there are six days whose distances are the same with each other. In this 607 

case all the days are included and among six days, one is selected with equal probabilities.  608 

Day Dist. 
Sorted 

Day 

Sorted 

Dist 
Prob 

1 6 14 3 0.48 

2 8 3 4 0.24 

3 4 4 4 0.16 

4 4 7 4 0.12 

5 9 8 4  

6 8 9 4  

7 4 10 4  

8 4 1 6  

9 4 12 6  

10 4 13 7  

11 8 2 8  

12 6 6 8  

13 7 11 8  

14 3 15 8  

15 8 16 8  

16 8 5 9  

 609 
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Table A 4. Example for GA mixture for Xc+1. The second and third rows present two selected 611 

sets, while the third row shows the final set for Xc+1 with the crossover at S6 and S8 and the 612 

mutation for S12.  613 

 
Assigned 

day, p 

Selected 

day, 

p+1 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Set1 14 15 1 0 0 1 1 0 0 1 1 1 1 1 

Set2 4 5 1 0 0 1 1 1 1 0 1 1 1 1 

Final   1 0 0 1 1 1 0 0 1 1 1 0 

 614 
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